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Synopsis 

The two numerical methods are used to estimate craze surface displacements and stresses for both 
isolated crazes and crazes at crack tips. The results are compared with the predictions of craze 
micromechanics models. The investigation includes the computation of the craze surface stress 
profile required to maintain a given craze opening displacement profile. The boundary element 
program requires less computer time than the finite element one, and similar results are obtained. 
The analyak also considers the craze surface displacement profile corresponding to an assumed craze 
surface stress distribution. The element methods produce resdts which are approximately the same 
as those obtained using the model of Verheulpen-Heymans and Bauwens. 

INTRODUCTION 

Craze m-crimechanics models consider the displacement and stress profiles 
of a craze normal to its surface, i.e., the interface of the craze and the polymeric 
matrix. In many of the models, one of the profiles is assumed, and the other is 
estimated. It is not necessary to assume either when using a craze model' which 
has previously been applied to the computation of craze displacements and 
stresses.2 The craze was modelled by a slit with springs, representing craze fi- 
brils, applied at  nodal points. The finite element package included linear 
springs, and the computed profiles illustrated the limitation of the implicit as- 
sumption of linear-elastic craze fibril behavior. It was not possible to model 
fib& more accurately using nonlinear springs and dashpots. However, a craze 
surface stress profile which was consistent with that computed using a Fourier 
transform procedure was obtained when experimental displacements of an iso- 
lated craze were substituted for spring displacements. The present study ex- 
tends this work to consider crazes at crack tips and to determine the craze opening 
displacement profile produced by a given craze surface stress distribution. The 
boundary element method3 is easy to input and is economical in computer time. 
It is suitable for the present application, which is essentially a boundary 
problem. 

CRAZE MICROMECHANICS MODELS 

These models have been reviewed by Gamer: and in this section the main 
emphasis is on models which are relevant to the present investigation. 

The first attempt to estimate from craze displacements was made by Knight,5 
who applied the Fourier transform analysis of Sneddon6 to the problem. Knight 
assumed that the surface displacement was constant for most of the craze length 
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and that it reduced to zero at the tip. The craze surface stress profile was un- 
realistic and was qualitatively similar to ones obtained' assuming Hookean be- 
havior of the fibrils. The spectral method used by Knight has r e ~ e n t l y ~ . ~  been 
applied to experimental displacement profiles. 

The stress u,(x) normal to the craze surface is estimated by superposing the 
uniform applied stress on the stresses A S ( x )  required to maintain the profile 
of craze surface displacement u ( x )  in the absence of applied stress. The Fourier 
transform procedure for evaluating A S ( x )  is convenient using a computer pro- 
gram, but the relationship between the craze opening displacement and surface 
stress profiles is shown more clearly by reference to an alternative solution4 to 
the governing equation. The distributed dislocation method is used to determine 
the stress at  x due to dislocations between the points x and x + d x  l, and it is 
found that U ( x )  is given by the equation 

where u 1  is the displacement derivative. E* is equal to E for plane stress and 
El(1 - v2) for plane strain. The dislocation method may be used in this case, 
even though the displacements are produced by craze fibrils, since the calculated 
stresses arise from elastic deformation of the matrix at  the interface. 

Several craze models assume a two-stage craze surface stress distribution. In 
this paper computed displacements are compared with those predicted by 
Verheulpen-Heymans and Bauwen~.~ Their model was derived for the case of 
a single craze of half-length a in an infinite sheet, which was subjected to a uni- 
form applied tensile stress ua. The stress normal to the craze boundry is uc in 
the body of the craze and ut in the tip zone, as shown in Figure 1. The length 
r of the zone is such that there is no stress singularity at the tip. This condition 
is satisfied when 

A similar stress distribution is assumed by Chudnovsky, Pailey, and Baerlo in 
their thermodynamic approach to quasiequilibrial craze growth. The base and 
the tip zone correspond to the inert and active zones, respectively, in their model. 
The figure can also represent other models if a is assumed to be the half-length 
of a discontinuity. In the model of Argon and Salama" the craze length is equal 
to a - r and the constant stresses are uc in the craze and ut in the plastic zone 
at  the craze tip. The Dugdale model12 has also been applied to crazing,13 and 
in this case the crack length is a - r ,  u, is zero, and ur is the stress in the line yield 
zone, i.e., the craze. 

Verheulpen-Heymans and Bauwensg used the Muskheli~hvili'~ conformal 
mapping method to derive general expressions for stresses and displacements. 
The equations were printed incorrectly in the original paper and the amended15 
equation for the surface displacement of the craze boundary, where x I a - r ,  
y = 0, is 
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IDEALIZATION OF THE PROBLEM 

The numerical analysis was applied to the case of a central discontinuity in 
a sheet of a glassy polymer which was subjected to applied uniaxial tension. The 
finite element and boundary element idealizations are shown in Figure 2, in which 
the craze tip mesh is drawn to an enlarged scale. 

In the craze tip region in the midnodes of the boundary elements coincide with 
the finite element nodes. Due to symmetry, one quadrant only was considered 
in the finite element program and in the initial part of the boundary element 
analysis. However, the boundary element results were inaccurate at the corner 
corresponding to the craze base. This difficulty can be overcome by refining 
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Fig. 2. Finite and boundary element idealization with the craze tip mesh shown to an enlarged 
scale. 
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the mesh or by considering the whole plate with two separate boundaries, viz., 
the sheet boundary and the craze surface. In this case an alternative approach 
was adopted, and a half-plate mesh was used since the craze surface is then at 
an appreciable distance from the corner of the mesh. The ratio of plate width 
to discontinuity length was such that the results approached those of an infinite 
plate. 

RESULTS 

In order to check the suitability of the boundary element method for craze 
micromechanics analysis, it was first applied to a case which had been analyzed 
using the finite element method.* Lauterwasser and Kramer7 measured the 
surface displacements of an isolated craze, and their results were included in the 
input to the boundary element program which is based on constant elements. 
The boundary element and finite element estimates of the craze surface stress 
profile are plotted in Figure 3. There is good agreement between the two esti- 
mates and the Fourier transform analysis results, which are also plotted. 

The next stage in the analysis was to calculate craze surface displacements 
corresponding to a given craze surface stress distribution. The assumed dis- 
tribution, foran isolated craze of half-length 1 111111, is shown in Figure 4(a). The 
surface tractions were specified in the inputs to the programs. The corre- 
sponding craze surface displacement profiles are plotted in Figure 4(b), and it 
is seen that the numerical methods give displacement profiles which approximate 
that of the model. 
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Fig. 3. Craze surface stress profiles obtained by the Fourier transform procedure (after Ref. 7) 
and the element methods: ( - - - )  Fourier transform; (-) finite element; (-I-) boundary ele- 
ment. 
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Fig. 4. (a) Craze surface stress distribution for a single craze; (b) craze opening displacement profile 
corresponding to (a): (-) model; ( -  - -) finite element; (x) boundary element. 

The case of the craze at a crack tip was approached by putting cc equal to zero, 
producing the stress distribution of Figure 5(a), and then using eq. (2) to calculate 
the tip stress bt corresponding to a given rla. The craze length was much greater 
than the length of the crack. This is typical of crazes grown from a starter crack 
in polystyrene. The craze surface displacement profiles are shown in Figure 5(b), 
and the trend is similar to that of the isolated craze. Computed results are again 
in satisfactory agreement with the model. The fmite element method gives an 
estimate of the crack tip opening displacement which differs from the theoretical 
value by less than 4%, but the method is slightly less accurate in its estimate of 
displacements elsewhere on the crack surface. The error in these nodal dis- 
placements varies between 5% and 6%. There are few nodes on the crack surface, 
and the accuracy could be improved by refining the mesh in this region. When 
the crack length is much greater than the craze length, the mesh produces inac- 
curacies in craze opening displacements since there are few craze tip nodes in 
this case. The assumed stress distribution is similar to that of the Dugdale model 
and results which are in good agreement with the model have been obtained both 
by the finite element1' and the boundary element18 methods. 
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Fig. 5. (a) Surface stress profile for a craze at a crack tip; (b) surface displacement profde produced 
by (a): (-) model; ( - - - ) finite element; (1,) boundary elements. 

The numerical methods have been used with idealized boundary conditions, 
and it is desirable to determine the effect of imposing more realistic conditions. 
This has been accomplished using some of the data of Chan, Donald, and 
Krame9 for crazes at  crack tips in thin polystyrene films. Figure 6(a) shows 
the displacement profile in which the measured surface displacements of the 
craze and a small deformation zone at the crack tip are joined by a smooth curve 
to crack opening displacements calculated using the Dugdale model. The 
Fourier transform procedure used for estimating A S ( x )  calculates stresses due 
to displacements of a slit in an infinite plate whereas the plate obviously has finite 
width and the “crack” is a diamond-shaped indentation. The element methods 
were used to determine crack surface displacements and craze surface stresses 
for both idealized and actual boundary conditions. The results were approxi- 
mately the same in all four cases. A typical profile is shown in Figure 6(b), where 
comparison is made of the Fourier transform results and the surface stress profile 
obtained using the boundary element method, taking into account the shape of 
the crack and the width of the plate. The computed crack surface displacements 
are within 6% of the calculated values. The boundary element profile for an 
infiiite plate differs by 2% from that shown for the finite width plate. 
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Fig. 6. (a) Surface displacement profde for a craze at the tip of a crack (after Ref. 8); (b) Comparison 

of the boundary element and Fourier transform estimates of the surface stress distribution required 
to maintain (a): (0) Fourier transform; (-1-1 boundary element. 
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DISCUSSION 

The similarity between the results of the spectral method and the two element 
methods is predictable. The relationship between the finite element and Fourier 
methods was studied by Holmes.lg It  was shown, for a regular mesh constriic- 
tion, that it is possible to recast the finite element method into a Fourier method 
provided that the frequencies are not required to be evenly spaced. Boundary 
element results are generally in good agreement with finite element ones, the 
difference in values depending on the mesh construction and the type of element 
used. 

The computer time required by the boundary element method is usually less 
than that needed in order to analyze the same problem by finite elements. In 
the present investigation, the finite element program to compute stresses from 
prescribed displacements requires four times as much computer time as the 
boundary element program. When displacements are computed from stresses, 
the boundary element time is the same, but the finite element time is reduced. 
The finite element time include the overheads of the package while the boundary 
element times relate to a two-dimensional elasticity program with constant el- 
ements. These elements require less computer time than linear and higher order 
ones, which produce more accurate results. Constant elements produce satis- 
factory results in this case, and the use of higher order elements would not be 
justified. 

The results of the numerical analysis show that computed surface displace- 
ments are consistent with the assumed surface distribution, although it does not 
necessarily follow that the assumption is correct. In fact, it has been suggested20 
that the Dugdale model is not fully adequate to describe craze profiles. Nev- 
ertheless, computed surface stress profiles corresponding to measured dis- 
placement profiles indicate that the two-stage stress distribution is a reasonable 
approximation both for isolated crazes at  crazes at  crack tip. In the latter case 
a modified Dugdale model, with a two-stage craze stress distribution, is more 
appropriate. 

Having established that the two numerical methods give results which iip- 
proximate to the predicted ones when the assumptions and boundary conditions 
of the models apply, it will be possible to extend the analysis when further craze 
micromechanics data is available. The geometry of the plate and the crack can 
be considered, and the boundary conditions of the experiment can be included 
in the input to the program. The models considered assume a linear-elastic 
matrix, but it is not necessary to impose this restriction when using the two iiu- 
merical methods. 
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